How to Calculate P90 (or Pxx) PV Energy Yield Estimates (2024)

To assess the photovoltaic (PV) energy yield potential of a site, we run models using best available data and methods. The result of the modelling is the P50 estimate, or in other words, the “best estimate”. P50 is essentially a statistical level of confidence suggesting that we expect that the predicted solar resource/energy yield may be exceeded with 50% probability.This also means that with at same probability the expectation may not be achieved.

P50 level of confidence may represent too high risk for some investors. Therefore, other probabilities of exceedance such as P90 (estimate exceeded with 90% probability) or P75 (estimate exceeded 75% of the time) are considered. Lenders and investors typically use P90 estimates to be confident that sufficient energy is generated, allowing to safely repay the project debt.

In solar energy, distribution of uncertainty does not perfectly follow normal distribution. Yet for the sake of simplified calculations, and also because statistically representative data is not always available, a concept of normal (Gaussian) distribution of uncertainty is used (bell-shaped curve, see Figure 1). P50 value is the center/mean, and it represents the estimate that occurs with the highest probability.


How to Calculate P90 (or Pxx) PV Energy Yield Estimates (1)
Figure 1: P50 value represented in a normal distribution

The P90 value is a lower value, and it is expected to be exceeded in 90% of the cases (Figure 2). The P75 value is a value higher than P90 (and lower than P50), and it is expected to be exceeded in 75% of the cases. Similarly, any Pxx exceedance level can be defined (Figures 2 and 3).


How to Calculate P90 (or Pxx) PV Energy Yield Estimates (2)
Figure 2: P90 value represented in a normal distribution

How to Calculate P90 (or Pxx) PV Energy Yield Estimates (3)
Figure 3: P50, P75, P90 and P99 value represented in a normal distribution

P50 is the most probable value, also called best estimate, and it can be exceeded with 50% probability. P90 is to be exceeded with 90% probability, and it is considered as a conservative estimate.

All Pxx values are constructed by knowing (i) the best estimate or P50 (the value calculated by the models or measured by solar sensor) and (ii) the value of total uncertainty associated with this estimate. There is nothing what we could call P50 uncertainty: P50 is the best estimate and there is a level of uncertainty associated to it, which in turn can be used for calculation of exceedance values at different confidence levels, all of them based on the same probability distribution of values.

Factors of uncertainty considered in photovoltaic energy calculation

The calculation of Pxx scenarios from the P50 estimate takes into account the total uncertainty that summarizes all factors involved in the PV energy yield modelling. For valid characterization of long term climate patterns, solar resource and meteorological data representing at least 10 years is required.

In the following text we will consider evaluation of uncertainty of annual (yearly) values. The following sources of uncertainty are to be considered in evaluating a total uncertainty:

  1. Uncertainty of models. The standard data deliveries include information about the model uncertainty referring to yearly GHI estimates. The general uncertainty information is provided in PDF data reports, and on request it can be more accurately specified with regard to the region of interest. The model uncertainty already includes the uncertainties related to the measurements used for the model validation. In PV energy calculation, the GTI values are used, and the modelconverting GHI to GTI also contributes to the total uncertainty.
  2. Interannual variability. Weather changes year-by-year, in longer-term cycles and has also stochastic nature. Therefore, solar radiation, air temperature and PV energy yield in each year can deviate from the long-term average to some extent, and this is called interannual variability. It can be calculated from the historical time series as a standard deviation of the series of annual values. If the interannual variability for a period ofNyears is being considered, then the STDEV is to be divided by the square root ofN(typically one year, 10 years, or the total expected lifetime of the solar energy asset). For single year this uncertainty is highest, and it decreases with number of years. In P90 energy calculation, the case of variability that can be expected at any single year is typically assumed. On request, calculation of variability over longer period (10, 20 or 25 years) is also provided. Optimally, interannual variability of PV power production is calculated from full historical time series. In case that TMY data is used this is not possible and therefore a less accurate assumption ofGHIvariability is applied.
  3. Uncertainty of energy simulation model. This considers the imperfections of PV energy simulation models, which provide values of expected energy yield. Various uncertainty factors affecting PV energy production (e.g. soiling losses, availability, etc.) should be included as well, and often, these are the major sources of uncertainty in simulation models.

The final P90 (Pxx) is obtained by combining P50 with all factors of uncertainty expressed for the same exceedance level

It is quite common to see the uncertainty expressed in terms of standard deviation (STDEV), which represents a confidence interval equivalent to approximately 68.27% of occurrence (84% probability of exceedance). Simplified assumption of the normal distribution, the uncertainty at P90 can be calculated simply by multiplying standard deviation by 1.282, resulting in a slightly higher number calculated from the same cumulative probability curve (Figure 4).


How to Calculate P90 (or Pxx) PV Energy Yield Estimates (4)
Figure 4: Uncertainty intervals, expressed at standard deviation and 80% confidence levels (P90 exceedance)

To round the values up or down to the desired figure (P90, P75 or similar) we can convert STDEV into any Pxx value based on the Gaussian distribution formulas(Table 1).

How to Calculate P90 (or Pxx) PV Energy Yield Estimates (5)
Table 1: Calculation of different PXX from a normal distribution of probability.

Obtaining the Pxx value from P50 estimate is quite straightforward if the uncertainty has been correctly calculated, as shown in Table 2.

How to Calculate P90 (or Pxx) PV Energy Yield Estimates (6)
Table 2: Calculation of different Pxx exceedance values for a normal distribution of probability.

As mentioned before, uncertainty is composed of several factors, so one thing we should keep in mind is working at the same exceedance level when combining them. In Solargis, the standard uncertainty estimates are provided at P90 level of exceedance.

The uncertainty sources are independent of each other and all the contributing factors are combined in a total uncertainty Utotal in a quadratic sum:

How to Calculate P90 (or Pxx) PV Energy Yield Estimates (7)

For calculating TMY P90, we take as a reference P90 values of solar resource (GHI and DNI; the weighting depends on the type of TMY and geographical location).The yearly P90 value is calculated as shown in Table 2. P90 uncertainty for solar parameters represents the total uncertainty, it is calculated as shown in Equation 1, where two sources of uncertainty are considered: uncertainty of the solar model and interannual variability for any single year.

Different calculation approaches may give different results

Solargis offers 3 type of hourly datasets that can be used for simulation of expected energy output for P50, P90, and other Pxx scenarios. Description and sample data files for each data type is given below:

  • Historical time seriescomprises the whole time period available (data from year 1994/1999/2007 to the present time). If expressed in hourly intervals, it has 8760 values per each year (8784 value for the leap years) of data available. The sample dataset below has more than 200,000 values for each parameter.
    Download sample data file for hourly time series (CSV, 14.1 MB)
  • TMY P50dataset represents, for each month, the most typical (average) climate conditions, and the most representative distribution of hourly values for the key parameters, referring to historical time series. It is constructed by concatenation of ‘typical’ months. If expressed in hourly aggregation, the full historical time series data file is in TMY finally compressed to 8760 ‘typical’ values. The benefit of TMY is size of the data file allowing faster speed of calculation. The disadvantage is the loss of various (less typical) weather patterns.
    Download sample data file for TMY P50 (CSV, 0.5 MB)
  • TMY P90dataset represents a year, which is close to the P90 annual value, and it characterizes a type of year with below-average solar resource conditions (higher occurrence of cloudy weather and higher concentration of atmospheric aerosols) and lower temperature. In a simplified way, it can be considered that it represents a year that can occur once in 10 years. Thus, it is suitable for simulation of conservative PV energy yield scenarios. This dataset is generated by concatenating months representing lower summaries of solar radiation so that the annual value is close to P90 (taking into account a combined effect of the solar model uncertainty and GHI interannual variability that can be observed at any single year). If expressed in hourly intervals, the information content present in historical time series is also finally compressed to 8760 values.
    Download sample data file for TMY P90 (CSV, 0.5 MB)

From the description above it is clear that in the best casefull historical time seriesdata should be used so that all types of weather patterns are represented in the energy simulation. Yet a typical practice in solar energy industry is to use TMY P50data, representing ‘standard’ year. This is partially due to the speed and efficiency of energy simulation. The other reason also is that current PV energy simulation software has very limited or no possibilities to use full time series. TMY P90data type is also widely used as it offers a comfortable and, to a great extent, standardised solution to work with a year that represent ‘conservative’ (suboptimal) weather conditions. The important benefit of using TMY P90, as add-on to TMY P50, is that it includes some of the hourly data patterns that may indicate critical weather conditions.

Depending on the dataset chosen in PV energy simulation for P90 (Pxx) level of confidence, the uncertainty factors should be applied in slightly different order and hence the simulation results will differ. The differences are in the approach differences are described in Table 3.

How to Calculate P90 (or Pxx) PV Energy Yield Estimates (8)
Table 3: Uncertainties that should be considered when using different Solargis datasets when running a PV energy

Steps to be taken for estimate of P90 annual PV energy yield when using three different data steps are described below.

Calculating PVOUT P90 annual value from full historical time series

  1. Calculate PVOUT for P50 from time series
  2. Consider uncertainty of GHI model estimate
  3. Consider uncertainty of the model transposing GHI to GTI
  4. Consider uncertainty due to variability of yearly PVOUT values (interannual variability)
  5. Consider uncertainties occurring during PV simulation steps
  6. Calculate total uncertainty of Steps 2 to 5 (Equation 1)
  7. Calculate annual value of PVOUT for P90 case from P50 value (Step 1) and total uncertainty (Step 6) using equation shown in Table 2.

Calculating PVOUT P90 annual value from TMY P50 data set

  1. Calculate PVOUT for P50 from TMY P50 data set
  2. Consider uncertainty of GHI model estimate
  3. Consider uncertainty due to variability of yearly GHI values (interannual variability)
  4. Consider uncertainty of the model transposing GHI to GTI
  5. Consider uncertainties occurring during PV simulation steps
  6. Calculate total uncertainty of Steps 2 to 5 (Equation 1)
  7. Calculate annual value of PVOUT for P90 case from P50 value (Step 1) and total uncertainty (Step 6) using equation shown in Table 2.

Calculating PVOUT P90 annual value from TMY P90 data set

  1. Calculate PVOUT from TMY P90
  2. Consider uncertainty of the model transposing GHI to GTI
  3. Consider uncertainties occurring during PV simulation steps
  4. Calculate total uncertainty of Steps 2 and 3
  5. Calculate annual value of PVOUT for P90 case from P50 value (Step 1) and total uncertainty (Step 4) using equation shown in Table 2.

Notes:

  • Calculation based on the use of time series makes it possible to estimate more accurately the interannual variability: by calculating it directly from PVOUT values. This is not possible when using TMY P50, where variability of GHI yearly values can only be considered.
  • Uncertainties of GHI model and GHI interannual variability are already included in the calculation of TMY P90 data set, therefore they are not considered in the calculation of PVOUT value for P90.

Examples

Simulation results for the sample of Almeria (Spain) are presented in Table 4: for full historical time series, TMY P50 and TMY P90. The selection of months calculated as the outcome of the TMY algorithm is shown in the column ‘Month: Year’.

How to Calculate P90 (or Pxx) PV Energy Yield Estimates (9)
Table 4: Summary of GHI and PVOUT values obtained for a sample site in Plataforma Solar de Almeria, Spain.

For the sample considered in this article, the results of applying the uncertainties for each dataset are presented in the Table 5. In comparison to using time series for the simulation (most accurate and complete approach), for this particular site using TMY P50 for the simulation resulted in 1% overestimation of P90 energy value, while using TMY P90 dataset resulted in 4% underestimation of P90 energy value. These deviations are related to the assumptions taken when calculating the interannual variability on the one hand, and the loss of information related to TMY generation on the other hand. This exercise was done as an example, and the obtained results may not show the same trend for other locations.

How to Calculate P90 (or Pxx) PV Energy Yield Estimates (10)Table 5: How to calculate PV energy yield value for P90 using different data sets for the sample site considered.

Notes

  • Solargis weather data has been used for the calculations (period 1994-2016, climate database Solargis v2.1.19).
  • Simulation run using Solargis methodologies, considering a 1 kWp system with cSi technology, inverter efficiency 97.5%, DC losses 2.5%, AC losses 1.5% and relative row spacing 2.5.
  • Production values for the first year of operation, no degradation factor considered in the calculations.
  • Location: Plataforma Solar de AlmeríaLatitude: 37.094416°, Longitude: -2.35985°.
  • Model uncertainty provided by Solargis: ±3.5%.
  • PV simulation uncertainty considered for the calculation: ±5%
  • All values expressed at P90 confidence interval (STDEV*1.282).
  • TMY calculated using Solargis method of the concatenation of selected ‘typical months’, including final adjusting of annual GHI to Time Series average.
  • Interannual variability calculated for 1 year.

Further reading

How to Calculate P90 (or Pxx) PV Energy Yield Estimates (2024)

FAQs

How to calculate P90 in solar? ›

P90 values are obtained by simulating a system's production over multiple years, determining how much variability there is from year to year, primarily driven by the weather (measured by the standard deviation) and then calculating the haircut necessary to outperform the estimated value 90% of the time.

How do you calculate the P90? ›

Step 1: Place lead results in ascending order (from lowest to highest value). Step 2: Assign each sample a number, 1 for lowest value. Step 3: Multiply the total number of samples by 0.9. This is your 90th percentile value.

What is the formula for PV energy yield? ›

Globally a formula E = A x r x H x PR is followed to estimate the electricity generated in output of a photovoltaic system. Example : the solar panel yield of a PV module of 250 Wp with an area of 1.6 m² is 15.6% .

What is P90 energy yield? ›

Therefore, other probabilities of exceedance such as P90 (estimate exceeded with 90% probability) or P75 (estimate exceeded 75% of the time) are considered. Lenders and investors typically use P90 estimates to be confident that sufficient energy is generated, allowing to safely repay the project debt.

What is the P90 estimate? ›

P90 represents the estimate of costs such that there is a 90 per cent probability of the project being delivered within that cost estimate. P50 represents the estimate of costs such that there is a 50 per cent probability of the project being delivered within that cost estimate.

How do you calculate solar PV yield? ›

A handy rule of thumb for calculating the yield of solar panels is the formula: average capacity × peak power. The average capacity of a solar panel is around 88% in the United Kingdom. This is due to differences in the orientation and pitch of the roof as well as variable weather conditions and panel quality.

How to solve P90? ›

P90 is the percentile that represents the top 10% of the data. To find P90, we use the formula: P90 = (n + 1)*0.9, where n is the number of data points. For this data set, n = 12, so P90 = (12 + 1)*0.9 = 10.89. This means that P90 is between the 10th and 11th data points.

What is the P90 value? ›

P90 represents a more conservative slice of the same distribution; a P90 value is a value that will be met or exceeded 90% of the time. If P90 energy production is 1,000kWh, for example, that means that there is a 90% chance in any year that the array will produce 1,000kWh or more.

How do you calculate P10 and P90? ›

It is half the difference between the third quartile (Q3) and the first quartile (Q1). P90 and P10 represent the 90th and 10th percentiles, respectively. P90 = 50 means that 90% of the data is below 50, and P10 = 10 means that 10% of the data is below 10.

What is the formula for energy yield? ›

Next, gather the formula from above = EY = EC / PE * 100. Finally, calculate the Energy Yield. After inserting the variables and calculating the result, check your answer with the calculator above.

How to calculate specific yield in solar? ›

However, due to different solar module design and efficiencies, it is easier to evaluate the performance (and hence their capability) of various solar modules by determining its specific energy yield (kWh/kWp) (i.e. by dividing the absolute yield (kWh) to its power output PSTC (kWp)).

How do you manually calculate PV? ›

PV = FV / (1 + r / n)nt

r = Rate of interest (percentage ÷ 100) n = Number of times the amount is compounding. t = Time in years.

How do you calculate P90? ›

What is the 90th percentile value? Multiply the number of samples by 0.9: 0.9 X 10 samples = 9 Therefore, the 9th highest ranked sample is the 90th percentile result to compare to the Action Level.

What is P90 in solar power? ›

The P90 value corresponds to the annual production level that should be exceeded with a 90% probability. Our model will calculate your energy yield using a TMY file. This TMY should be considered as an average and thus corresponds to P50.

What is the P90 forecast? ›

This is also known as the median forecast. P90 (0.9) - The true value is expected to be lower than the predicted value 90% of the time.

How do you calculate solar Pmax? ›

Maximum Power Point (Pmax)

The wattage that a solar panel is listed as is the Pmax where Pmax = Vmp x Imp at standard test conditions.

Top Articles
Idle Skilling Brewing
Xi Jinping Copypasta
Craigslist Home Health Care Jobs
Fan Van Ari Alectra
Teenbeautyfitness
Cumberland Maryland Craigslist
Craigslist In South Carolina - Craigslist Near You
Farmers Branch Isd Calendar
Employeeres Ual
All Obituaries | Ashley's J H Williams & Sons, Inc. | Selma AL funeral home and cremation
Zoebaby222
Void Touched Curio
6813472639
Nutrislice Menus
Ess.compass Associate Login
Aspen Mobile Login Help
Race Karts For Sale Near Me
My Homework Lesson 11 Volume Of Composite Figures Answer Key
Drago Funeral Home & Cremation Services Obituaries
Airrack hiring Associate Producer in Los Angeles, CA | LinkedIn
Touchless Car Wash Schaumburg
Who is Jenny Popach? Everything to Know About The Girl Who Allegedly Broke Into the Hype House With Her Mom
European city that's best to visit from the UK by train has amazing beer
At 25 Years, Understanding The Longevity Of Craigslist
Abga Gestation Calculator
Delete Verizon Cloud
Babydepot Registry
Downloahub
DIY Building Plans for a Picnic Table
Grandstand 13 Fenway
2487872771
Capital Hall 6 Base Layout
Marie Peppers Chronic Care Management
Wsbtv Fish And Game Report
Giantess Feet Deviantart
State Legislatures Icivics Answer Key
Labyrinth enchantment | PoE Wiki
Froedtert Billing Phone Number
Worcester County Circuit Court
Shell Gas Stations Prices
Pixel Gun 3D Unblocked Games
Arch Aplin Iii Felony
Vagicaine Walgreens
Deezy Jamaican Food
R/Gnv
Mcoc Black Panther
Uno Grade Scale
ESPN's New Standalone Streaming Service Will Be Available Through Disney+ In 2025
28 Mm Zwart Spaanplaat Gemelamineerd (U999 ST9 Matte | RAL9005) Op Maat | Zagen Op Mm + ABS Kantenband
Where To Find Mega Ring In Pokemon Radical Red
Adams County 911 Live Incident
Qvc Com Blogs
Latest Posts
Article information

Author: Reed Wilderman

Last Updated:

Views: 6289

Rating: 4.1 / 5 (52 voted)

Reviews: 83% of readers found this page helpful

Author information

Name: Reed Wilderman

Birthday: 1992-06-14

Address: 998 Estell Village, Lake Oscarberg, SD 48713-6877

Phone: +21813267449721

Job: Technology Engineer

Hobby: Swimming, Do it yourself, Beekeeping, Lapidary, Cosplaying, Hiking, Graffiti

Introduction: My name is Reed Wilderman, I am a faithful, bright, lucky, adventurous, lively, rich, vast person who loves writing and wants to share my knowledge and understanding with you.